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Abstract. We develop an adiabatic two-mode Floquet theory to analyse multiphoton coherent population
transfer in N-level systems by two delayed laser pulses, which is a generalization of the three-state stimu-
lated Raman adiabatic passage (STIRAP). The main point is that, under conditions of non-crossing and
adiabaticity, the outcome and feasibility of a STIRAP process can be determined by the analysis of two
features: (i) the lifting of degeneracy of dressed states at the beginning and at the end of the laser pulses,
and (ii) the connectivity of these degeneracy-lifted branches in the quasienergy diagram. Both features
can be determined by stationnary perturbation theory in the Floquet representation. As an illustration,
we study the corrections to the RWA of the (1+1) STIRAP in strong fields and for large detunings. We
analyse the possible breakdown of connectivity. In strong fields, the complete transfer is achieved, but the
intermediate state, unpopulated within the RWA, can become populated during the process. In the (2+1)
STIRAP, we show a residual degeneracy in a four-level system, that can be lifted by additional Stark shifts.
The complete transfer is achieved under conditions of connectivity.

PACS. 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes;
dynamic Stark shift – 33.80.Be Level crossing and optical pumping – 42.65.Dr Stimulated Raman scat-
tering; CARS

1 Introduction

It is well established that coherent population transfer is
more efficient with adiabatic passage techniques than it is
with single frequency π-pulse adjustment, since the former
requires only adiabaticity as opposed to the strict adjust-
ments of the length and the maximum amplitude of the
laser pulse required for the latter process [1,2]. Adiabatic
following can be produced by one laser pulse with swept
frequency (chirping) [3,4], or by the application of two
delayed laser pulses, the so-called STIRAP process (stim-
ulated Raman adiabatic passage) [5–7]. The STIRAP pro-
cess involves two delayed lasers (called usually the pump
and Stokes lasers, which couple an intermediate state re-
spectively to the initial and to the final state, see Fig. 1a).
The two possible sequences of the laser pulses are referred
to as “intuitive” (first pump and then Stokes laser) or as
“counterintuitive” (reverse order). The complete popula-
tion transfer in a three-level system is well understood
in the frame of the rotating-wave approximation (RWA)
[7,8]. The method consists in solving approximately the
Schrödinger equation within the RWA, which allows one to
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Fig. 1. The different schemes of the studied multiphoton
STIRAP studied. a) The (1+1) STIRAP in a three-level sys-
tem. For the one-photon detuning ∆0 6= 0, we have a single-
resonance process; for ∆0 = 0, we have a dual-resonance pro-
cess. b) The (2+1) STIRAP in a four-level system. ∆1 is the
one-photon detuning to the intermediate level E1 assisting
the two-photon transition between Ei and E0. c) The (2+1)
STIRAP in a five-level system, introducing additional Stark
shifts.
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calculate analytically the approximative dressed-states of
the problem. An adiabatic following is then required for a
complete population transfer. The calculations have been
performed for a pure three-level system [5], a three-level
system with other levels near the intermediate and final
states [9–11], for a four-level system [12] with multi-photon
STIRAP, and for multi-level systems with sequences of
three-level STIRAP processes [13]. In the three-level sys-
tems, the analytic calculation of the RWA dressed states
introduces a mixing angle, which expresses the connec-
tion of the dressed states to the initial and final bare
states, and which gives a picture of the complete popu-
lation transfer in the system. From this analysis one can
deduce that, if the two laser fields are resonant, (i) the
counterintuitive sequence for the pulses is required for the
complete population transfer, (ii) the intermediate level
is not populated with adiabatic evolution. In some ex-
periments, where the lifetime of the intermediate level is
comparable to the pulse length, this latter point is crucial
to avoid incoherent losses. The essential point is that the
population has to follow adiabatically one dressed state
(the transfer state) which is connected to the initial state
at the beginning of the process and to the final target state
at the end. That is to say (i) the connectivity of the trans-
fer state between the initial and final states is required,
(ii) the adiabatic passage on this dressed state must be
satisfied [5]. In the usual counterintuitive 3-level RWA,
the transfer state is identify as a trapped state (it has no
component in the intermediate level). It always connects
the initial and final states. The connectivity problem has
been investigated in absence of trapped state in a multi-
level system [11] and for non-zero two-photon detuning in
a three-level system [14–16]. Here we study the connec-
tivity problem in absence of trapped state due to strong
fields, large detunings (far from resonance) or Stark shifts
induced by a multiphoton process for the pump or/and
Stokes lasers. Non-adiabatic corrections have been con-
sidered in [17,18] and by considering superadiabatic basis
in [19].

We present a more general analysis of the STIRAP
problem, based on Floquet theory. This analysis goes be-
yond the RWA because (i) it allows to calculate simply
with perturbative arguments the connectivity of the trans-
fer state with the bare states without needing the complete
solution of the problem, (ii) it gives exact (in a numerical
sense) dressed eigenvalues during the whole process. We
remark that item (i) holds also for the RWA (with small
detunings) as long as the fields are weak. (In this case,
Floquet states are well approximated by the RWA). The
obtained corrections to the RWA exhibit cases for which
there is not a unique one-to-one correspondence of laser
frequencies and transitions, especially for high intensities
and multilevel systems, where detunings can be large. The
adiabatic Floquet theory for two modes is developed in
two distinct steps: (i) We first apply degenerate station-
ary perturbation theory on Floquet states, which allows
one to determine analytically the quasienergies for any
multi-level system. The degeneracy breaking is analysed
and related to the connectivity. (ii) The second step is

the numerical calculation of the quasi-energies. This step
produces “exact” dressed states in the sense that the ap-
proximations are only numerical and controlable [20]. This
step can be used to study the validity of the RWA ap-
plied to the whole problem. This method allows one to
explore the conditions (e.g. position and coupling of the
main and auxiliary levels) that are favorable for complete
population transfer. We remark that non-zero two-photon
detuning can be studied with our approach by the usual
extension of degenerate stationary perturbative theory to
the quasi-degenerate case.

As an illustration of the approach, we study the
STIRAP in a three-level system, and discuss the correc-
tions to the RWA for some limiting cases (high intensi-
ties, large detunings). The main result for high intensi-
ties is that the transfer state can become non-constant
(which was a main feature of the RWA), implying that
the intermediate bare state becomes populated during the
process, but not preventing the complete transfer (with a
non-decaying intermediate level). We also show particular
large detunings leading to the breakdown of connectivity.

We work with dimensionless variables (leading to
~ = 1). They can be defined for example through a
reference frequency (ω0): E ← E/~ω0, t ← ω0t and
Ωj ← Ωj/ω0, where the Rabi frequency between two lev-
els is defined as Ωj = µαj/~ with µ the coupling be-

tween these two levels and αj the amplitude of the jth

field. For example, if we assume a reference frequency
ω0 ∼ 6×1015 s−1 (U.V.), the pulse length of Tp = 1000/ω0

corresponds to a femtosecond regime (Tp ∼ 200 fs) and the
peak Rabi frequency Ωp = 0.5ω0 gives a peak intensity
I ∼ 1015 W/cm2. The approximate adiabatic criterion
ΩpTp >> 1 (deduced from the RWA analysis, if we as-
sume the same Rabi frequencies and the same lengths for
the Stokes and pump lasers [5]) can be satisfied for mod-
erate intensities (Rabi frequencies are much smaller than
the Bohr frequencies) and nanosecond pulses. In a fem-
tosecond regime, the pulses being much shorter, higher
intensities are required for adiabatic following. The pre-
dicted effects have been calculated for Rabi frequencies of
the order of the Bohr frequencies of the system, imply-
ing quite large pulses area (several hundred). This kind
of intensities can be experimentally achieved by femtosec-
ond pulses. Of course, these large intensities can surely
make other levels (and also continua) become relevant for
the precise study of the dynamics. We are here interested
by the qualitative deviations of the usual RWA in these
extreme (but experimentally reachable) intensities. Short
pulses imply that a further characteristic time (besides the
pulse area) comes into play, namely the number of oscil-
lations in a pulse: np = TP /(2π/ωp). The requirement of
adiabaticity restricts the minimum length of the pulses in
order to have np sufficiently large [21] and also restricts
their strength so that the time during which the pulses
envelope changes appreciably be long compared to 2π/ωp.
We have checked the adiabaticity with numerical studies
involving np & 300 and Rabi frequencies of the order of
Bohr frequencies of the system.
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We study the (2+1) STIRAP (two photons of the
pump field are needed for the transfer) in a four- and
five-level system. We show that the complete transfer is
not possible in a four-level system except if the detun-
ing involved in the two-photon process is large (far from
resonance). Additional Stark shifts in a five-level system
can make the complete transfer possible. The analysis of
connectivity allows one to determine which types of level
structures leads to this complete transfer. We first describe
the STIRAP process in the frame of the Floquet theory
and then expose the stationnary perturbation theory on
Floquet states.

2 Two-mode Floquet formalism

We study a multi-level system with the Hamiltonian H0

for which the initial population is in the state denoted ϕi
(of energy Ei). The aim of the STIRAP process is to pop-
ulate completely a final state ϕf (of energy Ef ), which
is not coupled directly with ϕi. This is achieved with the
help of one or several intermediate states coupled in gen-
eral with both ϕi and ϕf . The system is driven by two
smooth pulse-shaped monochromatic laser fields, called
pump and Stokes lasers. The respective variables will be
denoted by the indices p and s. The envelopes, carrier fre-
quencies and initial phases of the fields are respectively
denoted: α = (αp, αs), ω = (ωp, ωs) and θ = (θp, θs). The
Hamiltonian reads

Hα(t)(θ + ωt) = H0 + µ
[
αp(t) sin (θp + ωpt)

+ αs(t) sin (θs + ωst)
]
, (1)

where H0 describes the bare system and µ is the dipole
moment operator. Denoting t0p and t0s the times for which
the respective lasers are switched on, for the counterintu-
itive scheme (the Stokes laser before the pump laser), we
have t0s = 0 and t0p > 0 represents the relative delay
between the two lasers. The process occurs between the
instants t = 0 and tf = t0p + Tp, with Tp the duration of
the pump pulse. For the intuitive scheme, we have t0p = 0
and t0s > 0. The process occurs between the instants t = 0
and tf = t0s + Ts, denoting Ts the duration of the Stokes
pulse.

To treat the two periodic time-dependences as supple-
mentary degrees of freedom, we use the multi-mode (i.e.
for two or more incommensurate frequencies) Floquet the-
ory [22], generalizing the usual Floquet theory [23–25]. We
construct the multi-mode Floquet theory working with the
initial phases θ of the fields [26–29] rather than with time.
This conceptually clearer formulation avoids any confu-
sion between the periodic (fast) time with the adiabatic
(slow) time in formal developments. This representation is
presented in detail for the periodic case in [26] and for the
two-mode case in [27,28]. We remark that this represen-
tation appears naturally in the derivation of the Floquet
Hamiltonian from the fully quantized Hamiltonian in a
cavity. The phase θ is closely connected to the phase of
the photon field [20].

For a two-laser process, the quasienergy operator reads
[26–29]

Kα(t) (θ) = Hα(t) (θ)− iω ·
∂

∂θ
, (2)

where ω · ∂/∂θ = ωp∂/∂θp + ωs∂/∂θs. The quasienergy
operator (2) acts on the enlarged space K = H ⊗ L,
where H is the Hilbert space of the atom or molecule
on which H acts and L = L2(dθp/2π) ⊗ L2(dθs/2π)
with L2(S1, dθi/2π) the space of square integrable peri-
odic functions with measure dθi/2π. The Floquet theory
allows one, for fixed values of αp and αs, to express the
Schrödinger equation with time dependent Hamiltonian
i(∂/∂t)φ = Hα (θ(t))φ in terms of one with a time inde-
pendent Hamiltonian Kα (the quasienergy operator (2)):
i(∂/∂t)ψ = Kα (θ)ψ. The evolution operator of this lat-
ter equation, exp[−iK(t− t0)], is connected to that of the
original Schrödinger equation U(t, t0) by

T−tU(t, t0)Tt0 = e−iK(t−t0), (3)

where the translation operator acts on functions ξ(θ) ∈ L
as

Ttξ(θ) = ξ(θ + ωt). (4)

The eigenvectors {Ψn(θ)} of Kα (the Floquet states) form
a complete orthonormal basis of K if the spectrum {λn}
(the quasienergies) is pure point. We emphasize that, even
in the case where H0 has a finite number of states, the
spectrum of K is dense and can be continuous [28]. How-
ever, we will consider the spectrum as effectively pure
point for the finite durations of the interaction provided by
the pulses. This hypothesis is supported by the numerical
simulations.

The quasienergies appear in families, which can be la-
beled by a positive integer m:

λn = εm + k · ω, n ≡ (m, k), k ≡ (kp, ks)

with kp and ks integers. Since the spectrum is in general
dense, we can in principle reduce all the quasienergies to
zone (composed of the set of one member per family for
each family) as small as wanted. But numerically we limit
the maximum numbers of photons for the two laser fields.
This allows one to consider a relative zone compared to
these maximum photon numbers, where all the dynamics
can be described. In all the paper, we use the term “zone”,
meaning relative zone.

For each value of αp and αs, we can expand the solu-
tion of the time dependent Schrödinger equation in the
basis of Floquet states and apply adiabatic principles
for slow variations of the envelopes of the pulses [30]: If
at time t0 the system is an instantaneous Floquet state

φ(t0) = Ψ
α(t0)
n (θ(t0)), in the adiabatic limit (Tp →∞ and

Ts → ∞) the time evolution φ(t) stays for all t in an
instantaneous Floquet eigenstate:

φ(t) = eiδn(t)Ψα(t)
n (θ(t)) (δn ∈ R). (5)
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The phase δn(t) is the sum of the dynamical phase and
Berry’s geometric phase [31]. In our case where two pa-
rameters are varied adiabatically to form a closed loop
between the instants t = 0 and tf in the parameter space,
the Berry phase can be non-zero at the end of the two
pulses. But if we consider probabilities involving only one
quasienergy branch, it is irrelevant. In the frame of Flo-
quet theory, the quasienergies form surfaces as functions
of the two amplitudes αp and αs. An optimized trajectory
of the quasienergies on these surfaces can lead to complete
population transfer. The goal of the following discussion
is to find these trajectories to control complete transfer.

3 Degenerate stationary perturbation theory
for two-mode Floquet states

In this section, we present the general analysis of the pop-
ulation transfer in a systemH0 driven by two pulse-shaped
delayed lasers, resonant with the two unperturbed levels
(Ei and Ef ), in the sense that N · ω ≡ Npωp + Nsωs =
Ef − Ei , N = (Np, Ns) with Np and Ns integers (see
Fig. 1 for examples: a) (Np = 1, Ns = 1) STIRAP
in a three-level system, (Np = 2, Ns = 1) STIRAP in
b) four-level and c) five-level systems). For each time t,
the two resonant states give rise to two Floquet families{
λ
α(t)
i,k , λ

α(t)
f,k

}
(k = (kp, ks)). In one zone, two Floquet

states are degenerate for α = (0, 0). Other Floquet states
can be degenerate, either accidentally during the process
at some α 6= (0, 0), or if there are other resonances for
α = (0, 0). We first consider the case, denoted as a single-
resonance process for which only the above two quasiener-
gies are degenerate (i.e. the couplings with the intermedi-
ate states are non-resonant). Later we will study the case
of three degenerate Floquet eigenvalues at the beginning
and at the end of the process, denoted as a dual-resonance
process. The approach is based on the analysis, by station-
ary perturbation theory, of the degeneracy breaking at the
beginning and at the the end of the pulses. Since the pulses
are delayed, the degeneracy breaking at the beginning is
determined by one of the lasers and by the other one at the
end of the process. Since the frequencies are different, the
degeneracies are lifted differently by the two lasers. From
this perturbative analysis, we want to obtain conclusions
on the feasibility of a complete population transfer. The
perturbative analysis allows us to establish whether the
following two conditions are satisfied for a given system
and a given sequence of the delayed pulses:

(c1) The initial molecular state ϕi is associated to a single
quasienergy branch emanating from the degenerate
subspace.

(c2) This quasienergy branch, referred as the transfer
state is connected to the final state ϕf at the end
of the pulse.

In order for the conclusions to be valid, we have
to assume the two following hypothesis about the non-
perturbative regime:

(h1) There are no real crossings involving the transfer
quasienergy level as a function of t (except at the
initial and final times, when amplitudes are α = 0).

(h2) The dynamics on the transfer state is mainly adia-
batic.

The two hypothesis cannot be checked by perturba-
tive arguments, nor by the RWA in general. In the appli-
cations, we verify if they are satisfied by numerical com-
putation of the full quasienergy diagram and by numeri-
cal solution of the time dependent Schrödinger equation.
Assuming the hypothesis (h1), one can deduce from the
perturbative analysis the connectivity properties between
the levels at the beginning and at the end of the pro-
cess. If there are some real crossings involving the transfer
quasienergy, an independent analysis is necessary. Under
the general assumptions (h1) and (h2), if the two condi-
tions (c1) and (c2) are fulfilled, then the STIRAP process
yields a complete population transfer. Beside the analysis
of a given system, this approach gives a tool to explore
different variations (e.g. of level structures, couplings, or
laser frequencies and intensities) for which a STIRAP pro-
cess can be feasible and efficient.

For the single-resonance process, we give a completely
explicit formulation. The dual-resonance process is con-
ceptually identical, but for clarity, we do not write down
the complete formulas.

A characteristic assumption of the STIRAP process is
that the initial and final states are not coupled directly,
i.e. µif = 0. We also assume µii = µff = 0.

3.1 Single-resonance process

We consider the case where two quasienergies are degen-
erate at the beginning and at the end of the process,
which is produced by one multiphoton resonance in the
system (i.e. Np photons of the pump field plus Ns pho-
tons of the Stokes laser are resonant with Ei−Ef ). For a
single-resonance process, the relevant eigenvalues are, in

one relative zone,
{
λ
α(t)
i,0 , λ

α(t)
f,−N

}
, where λ

(0)
i,0 = Ei and

λ
(0)
f,−N = Ef −N · ω are degenerate at the beginning and

at the end of the pulses, (αp = αs = 0). Because of the de-
generacy, the corresponding Floquet states for α = (0, 0)
can be any linear combination of ϕi and ϕfe

−iN·θ. The
perturbation breaks up the degeneracy. Since the lasers
are delayed, the degeneracy breakings are not equivalent
at the end (t = tf ) and at the beginning (t = 0) of the
process. We denote the zeroth order basis of linear com-
binations, adapted to this degeneracy breaking, as

Ψ begina (θ) = aiϕi + afϕfe
−iN ·θ, (6a)

Ψ beginb (θ) = −a∗fϕi + a∗iϕfe
−iN ·θ, (6b)

for t = 0 , and as

Ψenda (θ) = a′iϕi + a′fϕfe
−iN ·θ, (7a)

Ψendb (θ) = −a′f
∗
ϕi + a′i

∗
ϕfe

−iN ·θ, (7b)
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W (1) =

 µii
∫ 2π

0
dθj sin θj

∫ 2π

0
dθk µif

∫ 2π

0
dθj e

−iNjθj sin θj
∫ 2π

0
dθk e

−iNkθk

µfi
∫ 2π

0
dθj e

iNjθj sin θj
∫ 2π

0
dθk e

iNkθk µff
∫ 2π

0
dθj sin θj

∫ 2π

0
dθk

 = 0, (19)

for t = tf , with |ai|2+|af |2 = 1 and |a′i|
2+|a′f |

2 = 1. When
the initial degeneracy is lifted, the two states split into

two branches corresponding to the Floquet states Ψ
α(t)
a

and Ψ
α(t)
b associated to the quasi-energies that we denote

λ
α(t)
a and λ

α(t)
b . The adiabatic time evolution of the initial

condition φ(0) = ϕi is thus

φ(t) = a∗i e
iδa(t)Ψα(t)

a (θ + ωt)− a∗fe
iδb(t)Ψ

α(t)
b (θ + ωt).

(8)

At the end of the pulses t = tf , the degeneracy of the two
Floquet states appears again and we can develop the state
at this time in terms of the two bare states:

φ(tf ) = eiδa(tf )

{[
a∗i a
′
i + a′f

∗
ei(δb(tf )−δa(tf ))

]
ϕi

+ e−iN·(θ+ωtf )
[
a∗i a
′
f − afa

′
i
∗
ei(δb(tf )−δa(tf ))

]
ϕf

}
,

(9)

and obtain the probabilities of inversion from ϕi to ϕf
and of staying in ϕi:

Pi→f (tf ) =
∣∣∣a∗i a′f − afa′i∗ei(δb(tf )−δa(tf ))

∣∣∣2 , (10a)

Pi→i(tf ) =
∣∣∣a∗i a′i + afa

′
f
∗
ei(δb(tf )−δa(tf ))

∣∣∣2 . (10b)

If the two pulses are symmetric and not delayed, then ai =
a′i and af = a′f , and the transition probability becomes

Pi→f (tf ) = 4|aiaf |
2 sin2

[
1

2
(δa − δb)

]
. (11)

It is dependent of the path of the quasienergies and of the
associated Berry phases. Otherwise, the complete transi-
tion is achieved, under the hypothesis of adiabatic passage,
if one of the two following conditions is satisfied:

|ai| ' 1 and af ' 0, a′i ' 0 and |a′f | ' 1, (12a)

or ai ' 0 and |af | ' 1, |a′i| ' 1 and a′f ' 0, (12b)

are fulfilled. We have here replaced the “equal” signs by
“approximately equal” to keep in mind that we have non-
adiabatic corrections (due to the finite length of pulses and
to contibutions of other levels). The case (12a) means that,
the zeroth order Floquet branch Ψ begina being connected
to the initial state: Ψ begina ≡ ϕi, the complete population
transfer from ϕi to ϕf by adiabatic passage requires that
the zeroth order Floquet branch Ψenda must be connected
to ϕf : Ψenda ∝ ϕf . The case (12b) is similar, except that

the population evolves on the branch Ψ
α(t)
b , its zeroth or-

der beginning on ϕi: Ψ
begin
b ≡ ϕi to end on ϕf : Ψendb ∝ ϕf .

Each of these two cases corresponds to a different order
of the sequence of the two delayed laser pulses, equations
(12a) and (12b) are usually referred as the “intuitive” and
“counterintuitive” laser sequences [5,32].

We apply the stationary perturbation method to cal-
culate the degeneracy breaking of the Floquet states. The
initial degenerate states ϕi and ϕfe

−iN ·θ (for α = (0, 0))
generate a two-dimensional subspace S0 of the enlarged
space K. We denote Kαj the αj-dependent quasi-energy
operator, corresponding to non-zero amplitude of the field
αj whith the other field kept at zero amplitude:

Kαj = K0 + αjŴj , j = p, s, (13)

with

K0 := −iω ·
∂

∂θ
+H0 (14)

and

Ŵj := µ sin θj (15)

acting onK (we will omit the index j in Ŵj , to simplify the
notation). The eigenvalue problem KαjΨαj = λαjΨαj is
solved by the perturbation method, i.e. in terms of powers
of the small amplitude αj :

λαj = λ(0) + αjλ
(1) + α2

jλ
(2) + · · · (16)

Ψαj = |0〉+ αj |1〉+ α2
j |2〉+ · · · (17)

where |0〉 ∈ S0 represents the unknown linear combina-
tions (6) and (7) in the zeroth order subspace generated
by the two degenerate Floquet states{

|φi〉 := |ϕi ⊗ 1〉 , |φf 〉 := |ϕf ⊗ e
−iN ·θ〉

}
and λ(0) = Ei = Ef − N · ω. The first order gives the
eigenvalue problem restricted to the zeroth order subspace

Ŵ (1)|0〉 = λ(1)|0〉 (18)

with Ŵ (1) = P0ŴP0, where P0 is the projector on the
zeroth order subspace. Written in the basis {|φi〉 , |φf 〉},
this operator is

See equation (19) above

and thus λ(1) = 0. As a consequence, for any Np 6= 0 and
Ns 6= 0, the degeneracy is still present at the first order.

The second order eigenvalue problem restricted to the
zeroth order subspace S0 is [33]

Ŵ (2)|0〉 = λ(2)|0〉, (20)
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with

Ŵ (2) = −P0ŴQ0

(
K0 − λ

(0)
)−1

Q0ŴP0, (21)

where Q0 = 11 − P0. The eigenvalue problem (20) gives
the second order correction of the eigenvalues and the as-
sociated zeroth order eigenvectors. The matrix elements of
W (2) in the basis {|φi〉 , |φf 〉} are given by (ν, µ ∈ {i, f})

W (2)
νµ =

∑
(m,k)6={(i,0,0),(f,−Np,−Ns)}

1

Ei − λ
(0)
m,k

× 〈φν |Ŵ |ϕme
ik·θ〉K〈ϕme

ik·θ|Ŵ |φµ〉K , (22)

which we can write more explicitly as

W (2)
νν =

1

4

∑
m

|µνm|
2

×

[
1

Eν −Em + ωj
+

1

Eν −Em − ωj

]
, (23a)

W
(2)
if = 0, (23b)

where j ≡ p (resp. j ≡ s) for αp 6= 0 (resp. αs 6= 0) and
αs = 0 (resp. αp = 0). The index m labels all the un-
perturbed levels of the system. The degeneracy is always
lifted at this second order (barring exceptional cases). The
eigenvalues λi and λf are thus

λi = Ei +W
(2)
ii α

2
j +O

(
α3
j

)
, (24a)

λf = Ei +W
(2)
ff α

2
j +O

(
α3
j

)
. (24b)

It is important to remark that the matrix W (2) is diago-
nal. Thus its eigenvectors are precisely |φi〉 and |φf 〉, which
are connected respectively to ϕi and to ϕf . The complete
population transfer is in principle possible if the relevant
Floquet state, connected to ϕi at the beginning of the pro-
cess is connected to ϕf at the end to the process. But there
can be deviation from adiabaticity (h2) if the perturbative
regime does not lift the degeneracy fast enough compared
to the speed of the process. This problem of matching be-
tween the perturbative and adiabatic regimes will be the
subject of a forthcoming work. Here, we restrict to the
situations in which the degeneracy is lifted fast enough by
intermediate levels. This assumption will be checked by
numerical simulations. Moreover, the presence of these in-
termediate levels are also required so that the initial and
final states are coupled significantly, in order to satisfy the
hypothesis of non-crossing (h1) during the whole process.
Under the conditions of non-crossing (h1) and adiabaticity
(h2), the complete population transfer from ϕi to ϕf , sat-
isfying equations (12a) or equations (12b), requires only
one of the following condition of connectivity:

If λbegini > λbeginf then λendf > λendi , (25a)

or if λbegini < λbeginf then λendf < λendi . (25b)

3.2 Dual-resonance process

We now consider the case where three quasienergies are
degenerate at the beginning and at the end of the process,
which is produced by two resonances in the system (i.e.
the pump laser is resonant with Ei − E0 and the Stokes
laser with Ef −E0) :

N · ω ≡ Npωp +Nsωs = Ef −Ei, (26a)

N i · ω ≡ Niωp +N ′iωs = E0 −Ei, (26b)

Nf · ω ≡ Nfωp +N ′fωs = Ef −E0, (26c)

Ni +Nf = Np N ′i +N ′f = Ns. (26d)

We now consider the zone around E0, i.e. λ
(0)
0,0,0 ≡ E0.

The relevant eigenvalues are thus{
λ
α(t)
i,N i

, λ
α(t)
f,−Nf

, λ
α(t)
0,0,0

}
.

The zeroth order subspace S0 is now generated by the
three Floquet states{
|φi〉 := |ϕi ⊗ e

iNi·θ〉, |φ0〉 := |ϕ0〉, |φf 〉 := |ϕf ⊗ e
−iNf ·θ〉

}
.

In this zeroth order basis, the representation of the
first order operator Ŵ (1) = P0ŴP0 is:

W (1) =

 0 W
(1)
i0 0

W
(1)
0i 0 W

(1)
0f

0 W
(1)
f0 0

 , (27)

with

W
(1)
0i =

(
W

(1)
i0

)∗
=
µ0i

2i

[
δj,pδN ′i,0

(
δNi,−1 − δNi,1

)
+δj,sδNi,0

(
δN ′i,−1 − δN ′i,1

)]
, (28a)

W
(1)
f0 =

(
W

(1)
0f

)∗
=
µf0

2i

[
δj,pδN ′f ,0

(
δNf ,−1 − δNf ,1

)
+δj,sδNf ,0

(
δN ′

f
,−1 − δN ′

f
,1

)]
.(28b)

(We remind that j = p, s depending on whether the anal-
ysed degeneracy lifting is produced by the pump or Stokes
laser.) Thus, this matrix is non-zero only for the (1+1)
STIRAP case, for which Ni = 1, N ′i = 0, Nf = 0 and
N ′f = −1, leading to

W
(1)
0i =

(
W

(1)
i0

)∗
= −

µ0i

2i
δj,p, (29a)

W
(1)
f0 =

(
W

(1)
0f

)∗
=
µf0

2i
δj,s. (29b)

The degeneracy is then lifted linearly. Since this matrix
is not diagonal, the condition (c1) is not always satisfied.
It is satisfied for a certain order of the laser sequences
(counterintuitive sequence [5]).

In the other (Np+Ns) STIRAP cases, we have Ŵ (1) ≡
0 and the degeneracy is not lifted by the first order. The
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second order is needed (Eqs. (20) and (21)). The elements
of the matrix W (2) are given by the formula (22) for
ν, µ ∈ {i, 0, f} and (m, k) /∈ {(i,N i), (0, 0, 0), (f,−Nf )}
and where Ei is substituted by E0. This gives for the di-
agonal elements

W (2)
νν =

1

4

∑
m

|µνm|
2

[
1

Eν −Em + ωj
+

1

Eν −Em − ωj

]
,

ν ∈ {i, 0, f}, (30)

where j ≡ p (resp. j ≡ s) for αp 6= 0 (resp. αs 6= 0) and
αs = 0 (resp. αp = 0). The off-diagonal elements, given
by (22) are not zero in general. To study the lifting of the
degeneracy, the matrix W (2) has to be analysed for each
particular case.

The complete transition requires also in this case
a condition of connectivity. For example, if the middle
Floquet state, connected to the initial unperturbed state,
is populated at the beginning of the process, then the
Floquet state connected to the final unperturbed state,
at the end of the process, has to be also the middle one.

4 The (1 + 1) STIRAP. Corrections to RWA

In this section, we reinterpret the well-known (1+1)
STIRAP process, yielding the complete population trans-
fer in a three-level system, illustrating the above frame-
work of adiabatic Floquet theory (see Fig. 1a). We com-
pare in detail the single-resonance process [32] with the
dual-resonance process [5]. The degeneracy is lifted lin-
earily with the field amplitude in the latter case (first or-
der) whereas it is quadratically lifted in the former case
(second order). We study the effects of the corrections
to the RWA to the connectivity problem and to the adi-
abaticity of the processes. We first remark that within
the RWA analysis, the connectivity is always satisfied, for
single- and dual-resonance processes. Here we obtain that
for the dual-resonance process, the connectivity is also al-
ways satisfied, but that the adiabaticity can be affected
for strong fields. We show a numerical example with com-
plete population transfer in strong fields. Within the RWA
analysis, the intermediate state is never populated during
the process. The corrections to the RWA show that this in-
termediate state becomes populated during the process in
strong fields. For the single-resonance process, the connec-
tivity can be affected by the corrections, even for moderate
fields, in the following particular cases: (i) The detuning to
the intermediate level ∆0 is comparable to the frequency
difference |ωp − ωs|; (ii) The detuning ∆0 is large in the
sense that it is of the order of the frequency of one laser
−ωp or −ωs; (iii) The frequencies ωp and ωs are close. We
examine some cases, showing the possible breakdown of
connectivity and its consequences to the dynamics.

The intermediate state for the single-resonance process
is denoted ϕ0. For the dual-resonance process, ϕ0 is res-
onant with the other states. Thus for the (1+1) STIRAP
process, the single-resonance process can be referred to as
a two-photon resonance, and the dual-resonance process

to as two one-photon resonances. The intuitive process
refers to an interaction in which the pump laser pulse ar-
rives first, while in the counterintuitive process the Stokes
pulse arrives first. We develop numerical simulations with
energy levels Ei = −2 and Ef = −0.39, and the frequen-
cies: ωp = 2 and ωs = 0.39. They are chosen so that for
a rather small number of photons, the effects of the two
frequencies are distinguishable. The coupling strengths are
µi0 = 0.25 and µf0 = 0.5. We study interactions leading to
the same peak Rabi frequencies for the pump and Stokes
fields in order to have in all cases the optimum adiabatic
passage for a given delay. We study short pulse lengths:
Tp = Ts = 1000, with the counterintuitive or intuitive de-
lays t0p = 400 or t0s = 400 (femtosecond regime). The
pulses are taken of the form

αj(t) = αmj sin2

(
π

Tj
(t− t0j )

)
,

t0j ≤ t ≤ t0j + Tj ,

j = p, s. (31)

4.1 Dual-resonance process

We first consider the case where ϕ0 is resonant with the
initial and final states. This gives three degenerate Floquet
states{
|φi〉 := |ϕi ⊗ e

iθp〉, |φ0〉 := |ϕ0〉, |φf 〉 := |ϕf ⊗ e
iθs〉
}
,

associated to the three identical quasienergies λ
(0)
i,1,0 =

Ei+ωp, λ
(0)
0,0,0 = E0, and λ

(0)
f,0,1 = Ef+ωs. This generates a

3-dimensional zeroth order subspace S0. In this basis, the
representation of the first order operator Ŵ (1) = P0ŴP0,
for αp ≡ 0 and αs 6= 0, is given by equation (27) with

W
(1)
0i = 0 (29a) and W

(1)
f0 = µf0/2i (29b). It gives the

three different first order contributions λ(1) to the eigen-
values (16) (denoted with the index s)

λ(s)
a = −

1

2
|µ0f |, λ

(s)
b = 0, λ(s)

c =
1

2
|µ0f |. (32)

The degeneracy is thus linearly lifted with the field am-
plitude. This gives rise to three different branches. We
determine the three zeroth order orthonormal eigenstates
associated to these branches:

Ψ (s)
a =

1
√

2

(
ϕ0 + iϕfe

iθs
)
,

Ψ
(s)
b = ϕie

iθp ,

Ψ (s)
c =

1
√

2

(
iϕ0 + ϕfe

iθs
)
. (33)

For αs ≡ 0 and αp 6= 0, the first order matrix W (1) is

given by equation (27) with W
(1)
0i = −µ0i/2i (29a) and

W
(1)
f0 = 0 (29b), which gives the three different first order

contributions to the eigenvalues (16)

λ(p)
a = −

1

2
|µi0|, λ

(p)
b = 0, λ(p)

c =
1

2
|µi0|. (34)
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The degeneracy is again lifted linearly. The three zeroth
order orthonormal eigenstates are

Ψ (p)
a =

1
√

2

(
iϕie

iθp + ϕ0

)
,

Ψ
(p)
b = ϕfe

iθs ,

Ψ (p)
c =

1
√

2

(
ϕie

iθp + iϕ0

)
. (35)

For αp ≡ 0 and αs → 0, equations (33) imply that the

instantaneous Floquet vector Ψ
α(t)
b , corresponding to the

quasienergy λb in the middle, is connected to ϕi. For
αs ≡ 0 and αp → 0, equations (35) imply that this Flo-

quet vector Ψ
α(t)
b is connected to ϕf , if no real crossings

involve it. This means that only the counterintuitive se-
quence for the laser fields leads to the complete popula-
tion transfer for any shape of the lasers, provided that
the passage is adiabatic and that no real crossings involve
the followed Floquet state [5]. The obtained asymptotic
first order eigenvalues are identical to the first order RWA
eigenvalues. Thus the connectivity is well reproduced by
the RWA, and the RWA quasienergies are correct at the
first order of the field amplitude.

Numerical simulations. The system (with E0 = 0)
is perturbed by the fields of strong peak amplitudes:
αp = 2 and αs = 1, giving the same peak Rabi frequen-
cies Ωp ≡ µi0αp = 0.5, Ωs ≡ µf0αs = 0.5. We show a
numerical calculation of the quasienergies (Fig. 2a). They
are compared to the approximative RWA dressed energies.
We have used 7-point discretizations for both fields, which
are sufficient for convergence. On this diagram, only the
three relevant quasienergies have been plotted. The RWA
eigenvalues are qualitatively correct: the lifting of the de-
generacy and thus the connectivity are well reproduced.
We can observe only small corrections for high field am-
plitudes, these are due to the second and higher order
effects which are not taken into account by RWA (They
are due to the counter-rotating terms). These effects are
analysed in detail in the following, for the single-resonance
process, for which the degeneracy is lifted by the second
order of the field amplitude. On this diagram, we com-
pare numerical simulations with RWA and the full Hamil-
tonian for the counterintuitive process (Figs. 2b and c,
with Pi→n(t) = |〈ϕn|φ(t)〉|2, n = i, 0, f): we observe that
the corrections although changing the population during
the process do not significantly affect the final popula-
tions: the population transfer is complete. One important
difference is that the intermediate state during the pro-
cess is populated. Within the RWA analysis, the trans-
fer state is identical to the so-called trapped state [11],
which is a linear combination of only the initial and fi-
nal bare states. This implies that the intermediate state is
never populated, except for adiabatic corrections [5]. The
trapped quasienergy is a constant eigenvalue (thus inde-
pendent of the field amplitudes). The deviations of the
transfer quasienergy from the RWA trapped quasienergy
is an indication that the transfer state gets a projection on
the intermediate state during the process. This interprets
the non negligible population on the intermediate state
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Fig. 2. The (1+1) STIRAP in strong field with a dual reso-
nance (ωp = 2, ωs = 0.39, ∆0 = 0, Ωmax = 0.5, Tp = Ts =
1000 and t0p = 400). a) The instantaneous exact (solid lines)
and RWA (circle lines) quasienergies. The single arrow indi-
cates the transfer state (λb). The deviation of the transfer state
from the constant posisiton implies the non-zero population in
the intermediate state during the process. b) The delayed in-
stantaneous Rabi frequencies of the Stokes laser (Ωs) and of
the pump laser (Ωp). c) Numerical simulation of the popula-
tion transfer for the counterintuitive process: the exact solution
(solid lines) and the RWA solution (circle lines). Population
transfer is complete in both cases at the end of the process,
although the intermediate solution is quite different.

during the process, as shown in Figure 2c. Thus for the
dual-resonance process, the criterion for adiabatic follow-
ing can be affected by second and higher order corrections
to RWA, but not the connectivity.

We remark that, for the pulse lengths we used, the
adiabatic error we observed is always very small (less than
1% of the total probability). It seems to be even smaller
than the numerical error due to truncation of the basis to
discretize the variables θ.

In Figure 3, we show the transfer Floquet state pro-
jected in the bare state basis (with the parameter θ = 0):

Pn(t) =
∣∣∣〈ϕn∣∣∣Ψα(t)

T (θ(t))
〉∣∣∣2 , n = i, f, 0. (36)

We compare Pn(t) with the numerical solution projected
in the bare state basis: Pi→n(t). The Pn fit the extrema
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Fig. 3. Transfer Floquet state projected in the bare state basis
Pn (solid line) and compared with Pi→n, n = i, 0, f (dashed
line and dots, they come from the previous figure). The pro-
jections Pn approximately fit the extrema of Pi→n.

of Pi→n(t) approximately (the undesirable oscillations of
the numerical evolution have disappeared). This shows the
relevance of the Floquet basis to describe the evolution
of the system. The transfer Floquet state determines to
which extent the intermediate state is populated during
the process.

4.2 Single-resonance process

We have seen that the first order of the perturbation the-
ory does not lift the degeneracy, but that the second or-

der can do it if Ŵ
(2)
ii is significantly different from Ŵ

(2)
ff

(Eq. (23a)), that is if a level E0 is such that E0 ≈ Ei+ωp ≈
Ef + ωs. We denote ∆0 the detuning between the inter-
mediate level and the initial and the final levels:

∆0 ≡ E0 − (Ei + ωp) = E0 − (Ef + ωs). (37)

We define ∆p and ∆s as the detunings respectively of the
pump laser on the transition between Ef and E0 and of
the Stokes laser on the transition between Ei and E0:

∆p ≡ E0 − (Ef + ωp) = ∆0 + ωs − ωp, (38a)

∆s ≡ E0 − (Ei + ωs) = ∆0 + ωp − ωs. (38b)

For any position of E0 compared to Ei +ωp and Ef +ωs,
the connectivity condition (25a) is generally satisfied with
the RWA analysis [5]. We remark that now the second
order corrections to the RWA appear at the same order
as the lifting of degeneracy. This means that connectivity
can be affected by the corrections contrary to the dual-
resonant case. In the general context (for which the con-
nectivity is satisfied), the complete transfer from ϕi to
ϕf requires only the condition of adiabatic following, for
both counterintuitive and intuitive sequences of the laser
pulses.

As an example, we analyse the system with the “small”
detuned intermediate level E0 = 0.06, in the sense that
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Fig. 4. The (1+1) STIRAP in strong field with one single
resonance (ωp = 2, ωs = 0.39, ∆0 = 0.06, Ωmax = 0.5 and
Tp = Ts = 1000). a) The instantaneous exact quasienergies
(solid lines) and RWA quasienergies (circle lines). The double
arrow indicates the transfer state (λa) for the intuitive process
(t0s = 400). The small deviations are essentially due to Stark
shifts. b) Numerical simulation of the population transfer for
the counterintuitive process (t0p = 400). Population transfer is
complete. c) Numerical simulation of the population transfer
for the intuitive process. Population transfer is complete, the
intermediate state is highly populated during the process.

it preserves the connectivity as we will see. We show
a numerical calculation of the quasienergies, which are
compared to the RWA dressed states (Fig. 4a). This
quasienergy diagram can interpret both the counterin-
tuitive and the intuitive processes, depending on the
direction it is read. The degeneracy breaking in this
quasienergy diagram can be compared to the degeneracy
breaking of the previous one (Fig. 2a). The lifting of de-
generacy here is slower, since it appears in second order
of amplitude, as opposed to second order in the single-
resonance case. We denote the upper resonant quasienergy
by λa and the lower one by λb. λa (resp. λb) corresponds

to the Floquet branch Ψ
α(t)
a (resp. Ψ

α(t)
b ) connected to the

state ϕi (resp. ϕf ), for αms & 0 and αmp = 0 (the left
part of the diagram 4a). We determine the second order
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quasienergies (24), for this part:

λ(s)
a = Ei −

1

4
|µf0|

2

(
1

∆0
+

1

∆0 + 2ωs

)
α2
s+O(α3

s), (39a)

λ
(s)
b = Ei −

1

4
|µi0|

2

(
1

∆0 + ωp − ωs
+

1

∆0 + ωp + ωs

)
α2
s

+O(α3
s), (39b)

and, for αmp & 0 and αms = 0 (the right part of the
diagram 4a),

λ(p)
a =Ei −

1

4
|µi0|

2

(
1

∆0
+

1

∆0 + 2ωp

)
α2
p+O(α3

p), (40a)

λ
(p)
b = Ei −

1

4
|µ0f |

2

(
1

∆0 + ωs − ωp
+

1

∆0 + ωs + ωp

)
α2
p

+O(α3
p). (40b)

For the right part, the Floquet branch Ψ
α(t)
a (resp. Ψ

α(t)
b )

is connected to the state ϕf (resp. ϕi). The condition of
connectivity is

If λ(s)
a > λ

(s)
b (resp. λ(s)

a < λ
(s)
b )

then λ(p)
a > λ

(p)
b (resp. λ(p)

a < λ
(p)
b ). (41)

These quasienergies have to be compared to the initially
degenerate RWA quasienergies, which we write and de-
velop into the second order (for the part where the Rabi
frequencies are much smaller than the detuning ∆0):

λ(p)
a = Ei +

∆0

2

[
1−

√
1 + (µi0αp/∆0)2

]
= Ei −

1

4

|µi0|
2

∆0
α2
p +O(α4

p), (42a)

λ
(p)
b = Ei. (42b)

The corrections are of two types: The first one is due to the
detuning ∆0 which produces a two-photon anti-resonant
term in addition to the resonant term. This correction
holds only for a detuning non negligible compared to the
Bohr frequencies. The second type of corrections is due to
Stark shifts produced by the pump and Stokes laser fields
on respectively the transitions ϕf/ϕ0 and ϕi/ϕ0 (with re-
spect to the respective detunings ∆p and ∆s (38)). For
a sufficiently small detuning ∆0, we have, from equations
(39) and (40), |λsb| >> |λ

s
a| and |λpb | >> |λ

p
a|, with λsb and

λpb of the same sign. This means that the connectivity (41)
is thus satisfied in this case. For the counterintuitive pro-
cess, the population follows adiabatically the quasienergy
branch λa (Fig. 4b). For the intuitive process, it follows
the quasienergy branch λb (Fig. 4b). Both schemes lead
to a complete population transfer. The counterintuitive
sequence is usually prefered in the nanosecond regime, be-
cause the intermediate state (ϕ0, which can have a short
lifetime) is less populated during this process.

The connectivity can be affected (independently of the
amplitude of the fields) in one the following limit cases:

(i) ∆0 is comparable to |ωp−ωs|, (ii) ∆0 is comparable to
−ωs or −ωp. For the dual-resonance process (∆0 = 0) or
for a small detuning ∆0 compared to |ωp − ωs|, −ωs and
−ωp, these Stark shifts in general produce corrections on
the quasienergies (see Figs. 2a, 4a) which do not affect
the connectivity. They become more important if (i) the
Rabi frequencies µi0αs or µ0fαp become of the order of
the detunings ∆s or ∆p, respectively, i.e. if the two fre-
quencies ωp and ωs are close, or the Rabi frequencies are
high (strong fields, see Fig. 2a.), or (ii) if ωs or ωp becomes
small. In these cases where the corrections are not negli-
gible, we cannot make a unique association of a specific
pulse with a specific transition as it is approximated in
the RWA.

Numerical simulations with breakdown of connectivity
(∆0 of the order of ωp − ωs). We consider for simplic-
ity ωp > ωs. The breakdown of connectivity occurs when
(i) λpa < λpb , which is true for ∆0 & ωp − ωs, and (ii)
λsa > λsb. The last condition (ii) is always satisfied for
|µi0|2/|µf0|2 < 2. We study the system with E0 = 1.7
(∆0 = 1.7), satisfying the previous conditions of break-
down of connectivity (Fig. 5). The peak field amplitudes
are αp = 2.2, and αs = 1.1. We obtain no transfer as
predicited (see Figs. 5b and c). For both the counterintu-
itive and intuitive processes, the population is back in the
initial state at the end of the process.

We remark that for ∆0 = ωp−ωs, this process becomes
dual-resonant, with the three degenerate eigenvalues for
α = 0: λi,2,−1 = λf,1,0 = λ0,0,0. Using the analysis of the
Section 3.2, with in this case Nf = −1, N ′f = 0, Ni = 2

and N ′i = −1, we obtain a degeneracy lifting of first or-
der between λf,1,0 and λ0,0,0, and of second order between
λi,2,−1 and λ0,0,0. We can determine the conditions of con-
nectivity (they depend on the size of |µi0|2/|µf0|2).

5 The (2 + 1) STIRAP process
in a four- and five-level system

We study the possibility of complete population transfer
with a two-photon resonance for one of the lasers (we con-
sider here a two-photon resonance for the pump laser, see
Fig. 1b and c). We consider for simplicity that only one
intermediate level (E1) assists the two-photon transition.
The study of this section interprets and completes the re-
sults of Oreg et al. [12] in a four-level system. They found
with RWA analysis that adiabatic transfer is not possi-
ble when one of the intermediate levels is in resonance.
We show that this transfer becomes possible if the in-
termediate state is far from resonance, provided that the
connectivity is satisfied. We also show that a fifth level in-
troducing Stark shifts in the process can make the transfer
possible (still if the connectivity is satisfied).

The intermediate level E1 defines the detuning

∆1 ≡ E1 − (Ei + ωp). (43)

It can be close to the resonance (∆1 is small compared to
the Bohr frequencies E1 − Ei and E0 − E1) or far from
the resonance (∆1 comparable to or larger than the Bohr



S. Guérin and H.R. Jauslin: Two-laser multiphoton adiabatic passage 109

1400 1200 1000 800 600 400 200 0
0

0.5

1
0 200 400 600 800 1000 1200 1400

0

0.5

1        
2.5

2.4

2.3

2.2

2.1

2

1.9

Fig. 5. The (1+1) STIRAP with one single resonance and
with breakdown of connectivity (ωp = 2, ωs = 0.39, ∆0 = 1.7,
Ωmax = 0.55 and Tp = Ts = 1000). a) The instantaneous
exact quasienergies (solid lines) and RWA quasienergies (cir-
cle lines). b) Numerical simulation of the population transfer
for the counterintuitive process. c) Numerical simulation of the
population transfer for the intuitive process. No transfer occurs
in both processes because the connectivity is not satisfied, al-
though complete transfer is predicted by the RWA.

frequencies). The resonant initial and final states of the
system and the frequencies have the following numerical
values for the simulations: Ei = −2, Ef = −0.39, ωp =
1, ωs = 0.39. All non-zero couplings are in this section
are set to 1 for simplicity. For the (2+1) STIRAP, the two
quasienergies for zero field λi,2,0 ≡ Ei + 2ωp and λf,0,1 ≡
Ef + ωs are degenerate. For the dual-resonance process,
λ0,0,0 is degenerate with the previous quasienergies.

5.1 Dual-resonance process

We consider that the energy E0 = 0 is resonant with the
initial level and the pump laser (two-photon resonance),
and with the final level and the Stokes laser (one-photon
resonance). For αp ≡ 0 and αs 6= 0, the first order matrix

W (1) is the same one as in the (1+1) process, giving a
linear breaking of the degeneracy. The first order contri-
butions to the eigenvalues are given by (32) and the ze-
roth order eigenvector of interest, related to the transfer

Floquet state, is the eigenvector connected to the initial

state Ψ
(s)
b = ϕie

i2θp . Its associated eigenvalue (the zero
eigenvalue) is always in-between the positive and negative
eigenvalues. Thus, the complete population transfer can
be obtained when the Stokes laser arrives first, i.e. in the
counterintuitive order, since the other eigenvectors are lin-
ear combinations of ϕf and ϕ0. The intuitive process fails
in general as for the (1+1) STIRAP process.

For αp 6= 0 and αs ≡ 0, the degeneracy is lifted by the

second order. We have to diagonalize W (2)

W (2) =

 W
(2)
ii W

(2)
i0 0

W
(2)
i0

∗
W

(2)
00 0

0 0 W
(2)
ff

 , (44)

with

W
(2)
ii = −

1

4∆1
|µi1|

2

[
1 +

∆1

∆1 + 2ωp

]
, (45a)

W
(2)
ff =

1

4
|µf0|

2

[
1

Ef −E0+ωp
+

1

Ef −E0 − ωp

]
,(45b)

W
(2)
00 = −

1

4∆1
|µ01|

2

[
1 +

∆1

∆1 − 2ωp

]
−W (2)

ff , (45c)

W
(2)
i0 =

1

4∆1
µi1µ10. (45d)

The elementW
(2)
ii is the sum of resonant and anti-resonant

terms between Ei and E1. W
(2)
ff contains Stark shifts of Ef

due to the pump field and E0. W
(2)
00 is the sum of resonant

and anti-resonant terms between E0 and E1, and Stark
shifts of E0.

5.1.1 The four-level system with an intermediate level close
to the resonance

In the case of an intermediate level close to resonance,
the anti-resonant terms are negligible. We can also ap-

proximate W
(2)
ff ≈ 0 if Stark shifts of Ef is negligible

(i.e. the detuning between Ef and E0 and the pump fre-
quency is large compared to the pump Rabi frequency).
This approximation is considered for the RWA, for which

we exactly have W
(2)
ff = 0. The matrix (44) becomes ap-

proximately

W (2) ≈ −
1

4∆1

 |µi1|
2 −µi1µ10 0

−µ∗i1µ
∗
10 |µ01|

2
0

0 0 0

 , (46)

and gives the three approximate second order contribu-
tions to the eigenvalues (16)

λ(p)
a ≈ 0, λ

(p)
b ≈ 0, λ(p)

c ≈
1

4

|µi1|
2

+ |µ01|
2

E0 −E1 − ωp
· (47)

Thus two eigenvalues stay accidentally almost degenerate
at this order. The degeneracy is only lifted when both
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Fig. 6. The failed (2+1) STIRAP with a dual resonance for
the counterintuitive process (ωp = 1, ωs = 0.39, ∆1 = 0.04,
∆0 = 0, Ωmax = 0.1, Tp = Ts = 5000 and t0p = 2000). a)
The instantaneous exact quasienergies (solid lines) and RWA
quasienergies (circle lines). We remark the non-lifting of the
degeneracy by the pump laser. b) The instantaneous Rabi fre-
quencies. c) Numerical simulation of the population transfer.
The transfer is not complete because of the residual degener-
acy.

the laser fields are different from zero. The degeneracy is
lifted, giving each branch connected to a superposition of
bare levels and thus a complete transition cannot occur.

Numerical study. We study the counterintuitive pro-
cess for a system containing the intermediate level E1 =
−0.96 (∆1 = 0.04). The laser amplitudes are αp = αs =
0.1 (satisfying that the effective pump two-photon Rabi
frequency is equal to the Stokes one-photon Rabi fre-
quency [34]), with the pulse strengths Tp = Ts = 5000
and the delay of t0p = 2000. On the quasienergy dia-
gram (Fig. 6a), we clearly see the near degeneracy of two
quasienergies as long as αs is zero (Fig. 6b). We observe
the shared population on the bare states at the end of the
process. We remark that the degeneracy remains strictly
in the RWA analysis, but that the Floquet quasiener-
gies have a small separation. This is due to small Stark
shifts between Ef and E0 produced by the pump laser.
To achieve the complete transition, this degeneracy needs

to be lifted for a small value of the pump laser amplitude.
Several possibilities are successfully tested: (i) Additional
Stark shifts are produced by the pump laser; (ii) The level
E0 is not resonant with the other ones at the beginning
and the end of the process (single-resonance process).

5.1.2 The four-level system with a far from resonance
intermediate level

In this case, we cannot neglect the Stark shift of Ef during
the lifting of the degeneracy, since the detunings Ef −
(E0+ωp) and ∆1 are both large. More generally, the Stark
shift of Ef becomes relevant for a detuning ∆1 of the order
of or greater than |ωp−ωs| (if the couplings |µi1| and |µf0|
are of the same order). The connectivity requires that the
quasienergy, associated to the Floquet state connected to
the final state, is between the two other ones.

Numerical studies. We study this case with one far
from resonance intermediate level E1. For the dual-
resonance process (E0 = 0.0), we have obtained com-
plete population transfer with the counterintuitive pro-
cess for the following parameters (which satisfy the con-
ditions of connectivity): ∆1 = 1.6, αp = 0.4, αs = 0.05,
Tp = Ts = 12000 and t0p = 4200.

5.1.3 Additional Stark shifts

We consider again the four-level system with the interme-
diate level E1 close to resonance. The residual degeneracy
does not occur if another level E2 (see Fig. 1c) contributes
significantly to the lifting of the degeneracy by one of the
following two possibilities: (i) E2 contributes to the value

of W
(2)
00 :

E2 ≈ E0 + ωp, ∆2 = E2 − (E0 + ωp). (48)

(ii) E2 contributes to the value of W
(2)
ff :

E2 ≈ Ef + ωp, ∆2 = E2 − (Ef + ωp). (49)

In the case (i), the condition of connectivity requiring that
the Floquet state connecting to the final level ϕf has a
quasienergy between the two others, gives

∆2

∆1
>

|µf1|2

|µi1|2 + |µ01|2
, ∆1∆2 > 0. (50)

Numerical study. We show a numerical simulation for
which the complete population is achieved (Fig. 7b), with
the supplementary level satisfying the condition of con-
nectivity (50): E2 = 0.92 (∆2 = −0.08), and the fields
αp = 0.1 and αs = 0.1 satisfying the adiabatic passage.
The pulse lengths are Tp = Ts = 5000 with a delay of
t0p = 2000 (counterintuitive process). We clearly see the
degeneracy breaking by the pump laser in the quasienergy
diagram (Fig. 7a). Since the transfer Floquet state is dif-
ferent from the trapped state (constant eigenvalue), the
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Fig. 7. The achieved (2+1) STIRAP with a dual resonance in
a five-level system providing additional Stark shifts (ωp = 1,
ωs = 0.39, ∆1 = 0.04, ∆0 = 0, ∆2 = −0.08, Ωmax = 0.1
and Tp = Ts = 5000). a) The instantaneous exact quasiener-
gies (solid lines) and RWA quasienergies (circle lines). The de-
generacy is now lifted. b) Numerical simulation of the popu-
lation transfer for the counterintuitive process (t0p = 2000).
The complete population transfer is achieved. We observe a
large population on the intermediate levels during the process
because the quasienergy followed deviates from the zero eigen-
value. c) Numerical simulation of the population transfer for
the intuitive process (t0s = 2000).

intermediate levels have a non-negligible population (max-
imum 40%) during the process. As predicted above, the in-
tuitive process fails to produce complete transfer (Fig. 7c).

In the case (ii), the matrix becomes

W (2) ≈ −
1

4∆1

 |µi1|
2 −µi1µ10 0

−µ∗i1µ
∗
10 |µ01|

2 + |µ02|
2 ∆1

∆2
0

0 0 0

 .

(51)

The characteristic polynomial giving the eigenvalues of
W (2) has always two different solutions (positive discrim-
inant). The connectivity requires that the two non zero
eigenvalues of W (2) (51) must have the opposite signs, i.e.

∆1∆2 < 0. (52)

In this case, we have obtained numerically (E2 = 0.92
has been used) a smaller population in the intermediate
states during the process (maximum 25%), since the trans-
fer Floquet state is now associated perturbatively to the
constant zero eigenvalue, thus closer to the trapped state.

5.2 Single-resonance process

We consider the four-level system with the intermediate
level E1 close to the resonance. During the increasing (or
decreasing) of the Stokes laser (with the amplitude of the
pump laser at zero) we have from (23):

W
(2)
ii ≈ 0 , W

(2)
ff ≈ −

|µf0|
2

4∆0
, (53)

and during the increasing (or decreasing) of the pump
laser (with the amplitude of the Stokes laser at zero), we
have

W
(2)
ii ≈ −

|µi0|
2

4∆1
, W

(2)
ff ≈ 0. (54)

The complete transfer requires the connectivity, i.e.

∆0∆1 > 0. (55)

When the relation (55) is not satisfied, there is no popu-
lation transfer. In fact the adiabatic passage implies that
the population at the end of the process is still in the
initial state ϕi.

Numerical studies. We show the complete population
transfer with a numerical simulation (Fig. 8) for a system
containing the levels E0 and E1 satisfying (55): ∆1 = 0.04
and ∆0 = 0.04, with the maximum fields αp = αs = 0.05
(This satisfies that the effective detuning, obtained by
adiabatic elimination of the intermediate levels, is min-
imized [12]). We can switch first either the Stokes laser or
the pump laser to achieve the transfer. The former case
has the advantage to populate very little the intermediate
levels during the process. We use for the pulse strengths
Tp = Ts = 5000 with a delay of t0p = 2000 (t0p = 0.4Tp)
for the counterintuitive process and t0s = 2000 for the
intuitive one. We clearly see a residue of the previous
accidental degeneracy (Fig. 6a) for the dual-resonance
case: this gives now two close branches. We remark, in
the quasienergy diagram (Fig. 8a), two close quasiener-
gies which can cause deviation from adiabaticity if the
passage is not slow enough.

We show the absence of complete population transfer
(Fig. 9) when the relation (55) is not satisfied: E1 = −1.02
(E1 . Ei + ωp), the other quantities being unchanged.
We remark that the two simulations (Fig. 9b and c) give
roughly the same picture but reversed. This is because in
this case, the counterintuitive and the intuitive processes
follow exactly the same path in the quasienergy diagram,
in opposite directions.
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Fig. 8. The achieved (2+1) STIRAP with a single resonance.
(ωp = 1, ωs = 0.39, ∆1 = 0.04, ∆0 = 0.04, Ωmax = 0.05 and
Tp = Ts = 5000). a) The instantaneous exact quasienergies
(solid lines) and RWA quasienergies (circle lines). b) Numer-
ical simulation of the population transfer for the counterin-
tuitive process (t0p = 2000). c) Numerical simulation of the
population transfer for the intuitive process (t0s = 2000). In
both cases, the complete population transfer is achieved. We
observe a larger population on the intermediate levels during
the intuitive process.

6 conclusion

In this article, we have discussed the STIRAP process in
the frame of Floquet theory. We have shown corrections to
the (1+1) STIRAP in strong field and with large detuning
of the intermediate state. We have studied the feasibility of
the (2+1) STIRAP in a four- and five-level system, deter-
mining the types of level structures which are well suited
for complete population transfer. We remark that, essen-
tially because of the two-photon process, (2+1) STIRAP
in atoms can involve more than four levels and a contin-
uum, which will produce Stark shifts and incoherent losses
[35]. These Stark shifts should make the complete transfer
feasible if the connectivity and the adiabatic following are
satisfied. Incoherent losses will reduce the transfer.

Supports from the EU network “Laser Controlled Dynamics of
Molecular Processes and Applications”, 4050PL93-2602, and
“La Fondation Carnot” are acknowledged. S. G. is grateful to

7000 6000 5000 4000 3000 2000 1000 0
0

0.5

1
0 1000 2000 3000 4000 5000 6000 7000

0

0.5

1        
2.08

2.06

2.04

2.02

2

1.98

1.96

1.94

1.92

Fig. 9. The failed (2+1) STIRAP with a single resonance.
(ωp = 1, ωs = 0.39, ∆1 = −0.02, ∆0 = 0.04, Ωmax = 0.05 and
Tp = Ts = 5000). a) The instantaneous exact quasienergies
(solid lines) and RWA quasienergies (circle lines). b) Numerical
simulation of the population transfer for the counterintuitive
process (t0p = 2000). c) Numerical simulation of the popula-
tion transfer for the intuitive process (t0s = 2000). In both
cases, the population comes back to the initial state ϕi. We
remark that the processes give the same picture because they
follow the same path in reversed orders.
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